3.163 \(\int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx\)

Optimal. Leaf size=156 \[ -\frac{(-1)^{3/4} a^{3/2} (3 B+2 i A) \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{(2+2 i) a^{3/2} (B+i A) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d} \]

[Out]

-(((-1)^(3/4)*a^(3/2)*((2*I)*A + 3*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]
]])/d) - ((2 + 2*I)*a^(3/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]
)/d + (I*a*B*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.493481, antiderivative size = 156, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {3594, 3601, 3544, 205, 3599, 63, 217, 203} \[ -\frac{(-1)^{3/4} a^{3/2} (3 B+2 i A) \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{(2+2 i) a^{3/2} (B+i A) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

-(((-1)^(3/4)*a^(3/2)*((2*I)*A + 3*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]
]])/d) - ((2 + 2*I)*a^(3/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]
)/d + (I*a*B*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x))}{\sqrt{\tan (c+d x)}} \, dx &=\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}+\int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{1}{2} a (2 A-i B)+\frac{1}{2} a (2 i A+3 B) \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx\\ &=\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}+(2 a (A-i B)) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx+\frac{1}{2} (-2 A+3 i B) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{\left (a^2 (2 A-3 i B)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac{\left (4 a^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{(2+2 i) a^{3/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{\left (a^2 (2 A-3 i B)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=-\frac{(2+2 i) a^{3/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{\left (a^2 (2 A-3 i B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{\sqrt [4]{-1} a^{3/2} (2 A-3 i B) \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{(2+2 i) a^{3/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{i a B \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}\\ \end{align*}

Mathematica [A]  time = 3.24651, size = 221, normalized size = 1.42 \[ \frac{a e^{-i (c+d x)} \sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)} \left (2 \sqrt{2} (A-i B) \left (1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )+i \left ((3 B+2 i A) \left (1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )+\sqrt{2} B e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}\right )\right )}{\sqrt{2} d \sqrt{-1+e^{2 i (c+d x)}}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]))/Sqrt[Tan[c + d*x]],x]

[Out]

(a*(2*Sqrt[2]*(A - I*B)*(1 + E^((2*I)*(c + d*x)))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]] + I*
(Sqrt[2]*B*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))] + ((2*I)*A + 3*B)*(1 + E^((2*I)*(c + d*x)))*ArcTanh[
(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[-1 + E^((2*I)*(c + d*x))]]))*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(Sq
rt[2]*d*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))])

________________________________________________________________________________________

Maple [B]  time = 0.059, size = 484, normalized size = 3.1 \begin{align*}{\frac{a}{2\,d}\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{\tan \left ( dx+c \right ) } \left ( -iB\ln \left ({\frac{1}{2} \left ( 2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a \right ){\frac{1}{\sqrt{ia}}}} \right ) \sqrt{-ia}a+2\,iB\sqrt{ia}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+i\sqrt{2}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) \sqrt{ia}a+2\,A\ln \left ( 1/2\,{\frac{2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a}{\sqrt{ia}}} \right ) \sqrt{-ia}a+2\,i\ln \left ({\frac{1}{2} \left ( 2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a \right ){\frac{1}{\sqrt{ia}}}} \right ) a\sqrt{-ia}-\sqrt{ia}\sqrt{2}\ln \left ({\frac{1}{\tan \left ( dx+c \right ) +i} \left ( 2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }-ia+3\,a\tan \left ( dx+c \right ) \right ) } \right ) a+2\,\ln \left ( 1/2\,{\frac{2\,ia\tan \left ( dx+c \right ) +2\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{ia}+a}{\sqrt{ia}}} \right ) a\sqrt{-ia} \right ){\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{-ia}}}{\frac{1}{\sqrt{ia}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x)

[Out]

1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^(1/2)*a*(-I*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*
x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+2*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(
d*x+c)))^(1/2)+I*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/
(tan(d*x+c)+I))*(I*a)^(1/2)*a+2*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)
+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a+2*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/
2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)-(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)
))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+2*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1
/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2))/(I*a)^(1/2)/(-I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.94579, size = 2020, normalized size = 12.95 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/2*(2*I*sqrt(2)*B*a*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c)
+ 1))*e^(I*d*x + I*c) - sqrt((-4*I*A^2 - 12*A*B + 9*I*B^2)*a^3/d^2)*d*log((sqrt(2)*((2*I*A + 3*B)*a*e^(2*I*d*x
 + 2*I*c) + (2*I*A + 3*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x +
 2*I*c) + 1))*e^(I*d*x + I*c) + 2*I*sqrt((-4*I*A^2 - 12*A*B + 9*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I
*d*x - 2*I*c)/((2*I*A + 3*B)*a)) + sqrt((-4*I*A^2 - 12*A*B + 9*I*B^2)*a^3/d^2)*d*log((sqrt(2)*((2*I*A + 3*B)*a
*e^(2*I*d*x + 2*I*c) + (2*I*A + 3*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e
^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*I*sqrt((-4*I*A^2 - 12*A*B + 9*I*B^2)*a^3/d^2)*d*e^(2*I*d*x + 2*I*
c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 3*B)*a)) + sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*d*log((sqrt(2)*((2*I
*A + 2*B)*a*e^(2*I*d*x + 2*I*c) + (2*I*A + 2*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + I*sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*d*e^(2*I*d
*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a)) - sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*d*log((sqrt
(2)*((2*I*A + 2*B)*a*e^(2*I*d*x + 2*I*c) + (2*I*A + 2*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*
d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - I*sqrt((-8*I*A^2 - 16*A*B + 8*I*B^2)*a^3/d^2)*d
*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a)))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.52343, size = 209, normalized size = 1.34 \begin{align*} \frac{-\left (i + 1\right ) \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{2} +{\left (\left (2 i - 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a - \left (2 i - 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{2}\right )} \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} \sqrt{i \, a \tan \left (d x + c\right ) + a} B}{2 \,{\left ({\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a - 3 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{2} + 2 \, a^{3}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

1/2*(-(I + 1)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(I*a*tan(d*x + c) + a)^2*a^2 + ((2*I - 2)*(I*a*tan(d*x
 + c) + a)^2*a - (2*I - 2)*(I*a*tan(d*x + c) + a)*a^2)*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*sqrt(I*a*tan(
d*x + c) + a)*B)/(((I*a*tan(d*x + c) + a)^2*a - 3*(I*a*tan(d*x + c) + a)*a^2 + 2*a^3)*d)